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CONTACT BETWEEN AN ELASTIC HALF-PLANE AND A PARTLY SEPARATED STAMP* 

E.L. NAKHMEIN and B.M. NULLER 

Problems for an elastic half-plane in contact with a stamp (or stamps) 
partly with full coupling, partly in contact with slippage, are considered. 
The problems reduce to the combined Dirichlet-Riemann boundary value 
problem and can, in general, be solved in quadratures. Solutions of 
homogeneous problems are given in terms of elementary functions. All 
combinations of the geometrical, force and other parameters at which 
contact with slippage occurs in a single region are shown, formulas 
showing the extent of the zones of smooth adhesion of the separated 
layers of the contacting bodies are given, and stress intensity coefficients 
are found for the cracks where separation into layers occurs and at the 
stamp edges. 

Such problems were first studied by Galin /2/ and Fal'kovich /3/ who 
assumed that the stamps are pressed into the half-plane. Later considerable 
attention was given to the problems of the detachment of the separated 
layers and the mathematically equivalent problems of crack propagation at 
the boundary separating the materials /4/. The main problem encountered 
when studying the strength characteristics of the elastic regions indicated 
above within the region of stress concentration is already clearly seen 
in the solution of the problem due to Abramov /5, 6/, and is connected 
with the fact that the above solution cannot be used in the case of the 
separation of a stamp partly detached from the support. The translational 
oscillations of the free boundary of the half-plane at the edge of the 
zone of full coupling mean in fact that the half-plane and the stamp 
intersect. The reliable realization of numerical, approximate and 
asymptotic solutions of problems of this type is hindered by their 
instability, as is seen from the results given below. 

1. Let the boundary of the elastic half-plane - m <r< 00, y <O be in contact with 
the coupled and a slipping stamp on the segments XE la, bl = M and 265 [c, dl = L, a< b < c< 

d, so that the following conditions hold: 

u (5) = u0 (r) + rO, x E M; u (z) = v. (x) + r (z), z E L U M (1.1) 

z,,@)=O, xfZL; a,(x)=T.y(x)=O, XEL 

Here u,,(z) and u0 (5) are real functions defining the tangential tension and the form of 
the stamps and their derivatives satisfy the Hi)lder condition, r(x) = r1 on M, r(z) = r, on 
L; ro, r,, r, are real constants, L'is the complement of LUM to the real axis. Using the 
given load acting on the stamps and the condition at infinity, it is required to find the 
stress-strain state of the half-plane. 

we shall seekthesolution of problem (1.1) in the form due to Muskhelishvili /6/ 

u"-~is,,=~(z)-~(~)+((z-~f)~) (1.2) 

2p(u’+iv’)=xQ,(z) +a,@)-(z---f)@’ 

Ul (z) = l/,uZw + 2ip (;c + 1)-l E- -Fe@ (2nz)+ + 0 (zq), z -b 00 (1.3) 

where the function a(z) is analytic in the plane of the complex variable z = z + iy with cuts 
along L and M, and has no more than integrable singularities at the nodal points; a prime 
denotes a derivative with respect to x; x = 3-4v, v is Poisson's ratio, M is the shear 
modulus, axm is the stress, em is the rotation at infinity, and F and 8 are the magnitude 
and the angle of inclination of the principal vector of the forces applied to the stamps; the 
angle 8 is measured anticlockwise from the direction of the axis ox, ogec 2% 

Substituting (1.2) into (l.l), we obtain for a(z) the combined Dirichlet-Riemann 
boundary value problem /l/ 

Im 0* (z) = f (x), f (5) = 2p (SC + 1)%o’(x), x E L (I.41 
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a+ (z) + xw (x) = g (z), g (x) = 2p lu,’ (z) + ire’ (r)l (1.5) 

2EM 

We will construct the canonical solution x (4 of the homogeneous boundary value problem 

Im@*(.r)==O, SAL (1.6) 

CD+ (3) + x@,- (I) = 0, z E A4 (1.7) 

in the form /l/ which will immediately satisfy condition (1.7). We obtain 

x(2)=2(2)&(=)(2--~)-" (f.9) 

.z(z)z(z - a)-%'iY(Z - b)-'i.-iY, y= '/‘&'Inx 0.9) 

0 < arg(z - a)< 2n, 0 < arg(a. - b) < 23~ 

Here z(z) is a canonical solution of the homogeneous Riemann problem (1.7) with integrable 
singularities at the nodes: the analytic function 9((z) is bounded in the z plane, with a cut 
alongL, and has no more than logarithmic singularities at the ends of the cutL, and a is 
an integer. 

Condition (1.6) is equivalent to the equations 

arg X*(x)=nn*, .zEL (1.10) 

where )‘a* are integers. Substituting (1.8) into (1.10) we obtain the following Dirichlet 
problem for determining the function q(z): 

Re*f(z)=hf(2), xEL (1.11) 

~*(~)=~~*-a~Z*{~)+~ar~(~-~)* 

whose solution in the class of functions shown above is given by the formulas /?/ 

9(z)+ y “++w”‘:; & + &_ \ h+ ‘9 If- (t) & 

i 

Y(z)=V’(z-C)(Z -d), O,<arg(a--c)<22n 

o,<arg(z-d),(2n 

(1.12) 

Transforming (1.12) with help of the relations /6/ 

s dl xi 
I’+ (t) (1 - 2) =m 

L 

and the formulas (1.111, (l-g), we obtain 

Let US pass in the expression for I(z) to the double integral 
dt 

i--t 

(1.13) 

(1.14) 

(1.15) 

and following /7, Sect.28/, change the order of integration. By virtue of (1.13) we obtain 

(REM) 
I(z)=$+l~-zcni 1 & 

M Y(T)(=--I) 

Y(7)=-t/(C-7)(d-T) 

This, together with (1.151, yiel.ds 

Evaluating the last integral we obtain 

I/(d - b) (8 - c) + 1/(c - 6) (z - d) 

b I/(d--)(a-c) +I/(c-a)(~-d) 1 

(1.16) 

(I.i'i) 

(1.18) 
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(1.19) 

It can be confirmed that f&< 0, fll>O. 
Thus the canonical solution of problem (1.6), (1.7) has, in accordance with (l.D), (1.9), 

(1.14), (1.16), the form 

X(z)=-- e*/&7(n++n-)~*ra x(~__s)-%(z_ b)-*/s@ - ~)-'/in+l(~_~)'ii"-l~ei'F(f) (1.20) 

where n = n+- n- and the function m(z) is given by formula (1.18). 
We find the integers n* and a from the behaviour of the solution at the nodes of the 

line L. According to (1.20), (1.181, two linearly independent canonical solutions exist in 
the igven class of functions, and each of these solutions has oscillating singularities at 
z=a and z = b. 

The first solution 

Xl (2) = 
#Pw 

f(z - 5) (2 - b) (a - c) (z - d) 
(L2l) 

with root-type singularities at z = c, z = d corresponds to the case nf = 0, n-= -3,a = 1. 
The second solution 

xa (2) = 
eia(z) 

1/G - 4) (2 - b) 
(1.22) 

is bounded and different from zero at the points z = c, z =d, and is generated by the parameters 

n+ = 0 n- = -2, a = 0. 
When z--+m, we obtain from (1.19), (1.211, (1.22) 

‘B1+l/r(afb+c-td)]+O(f) (1.23) 

The general solution of the combined boundary value problem (1.41, (1.5) bounded at 
infinity, has the form 

Q, (z) = P (z) XI (z) + Q (4 & (4 + % (4 (1.24) 

P (z) = CIze + C,z + C,, Q (2) f= D, z + D, 

where P(z) and Q(z) are polynomials with real coefficients, and @,(z) is a particular solution 
of the inhomogeneous problem determined by the formulas /l/ 

CD" (z) = x, (z)Pbl (2) + @(z)l. Q'o (2) = 0 (z-z), z--t a, (1.25) 

Let us write the formulas for the normal stresses in the segment of contact L. From 

(1.241, (1.21), (1.22), (1.10) and (1.3) we have 

2p (4 ch 90 (5) 2Q (~1 sh cpo (z) 
ag(5)=- l/(x--a)(=--b)(z--e)(d-2) - l/(~-~)(t-b) -*“+(x)+~o-(‘) 

(1.26) 

where we obviously have cpo(x)> 0 when XE L. 
Using the same relations, we write the expression for the derivative of vertical dis- 

placements of the boundary of the half-plane between the stamps (b < s < c) . in the form 

z~v’(+(%+I)[- p (4 00s VI (d 
f(z - a) (a - 6) (s - c) (z - d) 

f (1.27) 

Q(z’ sin “(@ 
1/(z -a)(~ - 6) 3 

f Im[x@o-(5) + cDo+(x)] 

f .z - n 
qi(Z)=2yIIl[Ji - 

V’(d - b) (c - 2) + J(c - b) (d -z) 

P---6 I/(d-a)(~--x)+I/(c-a)(d--2) 1 
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Let us consider two versions of the formulation o f the problem: a) the stamps are rigidly 
coupled to each other and the total principal vector of external forces applied to the stamps 
is given (Fig.l(l), the double line indicates sliding contact); b) the stamps move indepen- 
dentlywithoutrotation, under the action of known external forces applied to each stamp (Fiq. 
l(2)). 

In both problems the constants r,, and rl characterizing the displacement of the half- 
plane as a whole, remain undetermined; thevertical displacements are connected by the condition 
of continuity 

u,(e)+rz=$u'(z)d3:+"g(b)rrl (1.28) 
b 

The constants C,, C,,D,,D, are found from the conditions at infinity (1.3) which generate, 
in accordance with (1.251, the following system of algebraic equations: 

D1 + iC1 = e -% [1/4u,” -t_ 2ip (x +- I)-’ E-] (1.29) 

Da + iC% C XI [ipl i_ ‘/z (a +- b t_ c + d)] + D1 [ipI + 1/Z (a + b)] = - 1/2n-1P&Wo~ 

Let us find C, and r2. Putting in problem a) r, = rz, we find the constant C3 from Eq: 
(1.21, taking into account (1.27), (1.29). 

In problem b) we assume that the normal force Y, applied to the stamp L is given, and 
obtain the following equation for determining C,: 

px)dx=Y. (1.30) 

which should be solved together with (1.26) and (1.29); ra is found from (1.28). 
The soluiton constructed can be realized mechanically, provided that uy (z) < 0, 5 EL, 

which imposes constraints on the geometrical and force parameters of the problem. 

2. Let us consider the case when the ends of L and M coincide. Suppose that in conditions 
(1.1) M = [a, bl, L = Ib, dl, rI = r,, which corresponds to a single stamp whose edge has separated 
from the support, in contact with the half-plane. It is obvious (Fig.1, (3), (4)) that the 
edge x= d, of the stamp which has separated from the support need not coincide with the end 
of the slippage segment z = d(d, >d). Putting c = b in (1.20) and (1.18) we obtain the 
general expression for the canonical solution 

x @)=- $!.Wn++n-) +a (2 _ a)-'/. (s _ b)'/&/,n (z _ #/m-l-a &(z) (2.1) 

1/ (d - b) (z - a) 

cp(z)=2y1n I/(d-a)(z-b)+f(b-a)@-d) (2.2) 

Fig.1 

Since according to (2.2), q*(b) =Fniy, it follows from (2.1) that the function X(z) 
does not oscillate near the point z = b. 

Just as in Sect.1, we have here two linearly independent canonical solutions with 
oscillating singularities at 2 = a. One of them, with a root-type singularity at the point 
z=d, 

Xl (z) = 
iciv(z) 

((2 -a, (z -- d) 
(2.3) 

is bounded and non-zero at Z-ll. It corresponds to the parameters n+ = 0, n- = -1, a = 0. 
The other solution 
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(2.4) 

is generated by the parameters n+=O,n-=- 2, a = 0, bounded at z = d, and has an integrable 
singularity at z = b. 

The asymptotic forms of these solutions at infinity are given by the formulas 

(2.5) xl(z)=q [I+ ih+V;(a+dl] +. (4) 

X,(z)=~[l+ ii%+V;(a+b) ] +o(+) 

to (1.19), 

&=2YIn 
l/&;;<ol fly = y I/(b - a) (d - a) (2.6) 

solution of the problem, bounded at infinity, is given by formula (1.24) 

P (z) = C,z + Cm Q (z) = DIZ + D, (2.7) 

where, according 

The general 
where 

The asymptotic form of the particular solution of the inhomogeneous problem (1.25) is, 
as Z-POO, 

Let us write the formulas for the contact stresses in the slippage segment L: 

and in the coupled segment M: 

iQ (4 

1 
&(x) _ 

(z - a) (d - I) 

m)o+ (x) i- @o-(x), cpo (2) = 2Y In 
d(d - b) (2 -a) 

v(d--a) (b-4 + V-(b - Q) (d - 2) 

(2.9) 

(2.10) 

We find the arbitrary constants from the conditions at infinity. As in (1.29), we have 

D1 + if_?1 = [‘/,o,~ + 294 (X + 1)-l E”] e-* (2.11) 

Da + iC;+ iC1 [ih + ‘h (a + d)] + DI [iI% + l/a (a + b)] = 
_ l/,f1~ei@+d + go 

Let us consider the case of a flat stamp (u. (z) = u. (5) = 0) in translational motion caused 
by the action of a force F, which makes an angle 0 with the 01 axis. Let uXm = e-=0, then 
dJo (Z)IO and from (2.11) we have 

C1 = D1 = 0, Ca = --‘/,a~-‘F sin (f3 - PO), D, = --‘l,n-‘F cos(8 - PO) (2.12) 

According to (2.9), (2.10), (2.12) the asymptotic form of the stresses at the points 
where the boundary conditions separate, is 

uv (5) = u,, + 0 (Jfb - z), txy (5) = KII [2n (b - z)J-“* + (2.13) 

O(I/b), x->b-0 

uv (x) = &, [2n (x - b)]-“* + (JO + 0 (1/x - b), x * b + I-J 

cry (5) = Kid [2n (d - x)]p+ 0 (l/d - x), x --, d - 0 

KIb = (X - 1) (X + I)-’ &I, (2.14) 

KII = (x + 1) F cos (0 - PO) [2nx (b - a)]-“’ 

Kid = l/??F sin (9 - 60) [n (b - a)]-‘/~ (2.15) 

u. = 1j2n-l (X + 1) F sin (8 - 83 [X (b - a) (d - a)]-‘/: 

Using formulas (2.9), (2.12), we can confirm that the contact stresses will be compressive 
over the whole slippage segment L, provided that 
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SirI (0 - fill) C, 0, ~0s (8 -. PO) :.:c 0 (2.16) 

Hence, taking into account the fact that p,,<O, we obtain from this the necessary and 
sufficient conditions for the solution to be mechanically meaningful, in the form of a system 
of inequalities: 

n (2k -+- 1) =' 8 -- &, G-(x (2k $- "iz) k = 0, I, 2, . . . (2.17) 

If the lengths of the segments with coupling and with slippage are given, then f10 takes 
a specific value (2.6) and relations (2.17) will restrict the direction of the force which 
produces a contact along the whole segment L. If the direction of theforce is given, then 
the inequalities can be written in a different form, establishing the dimensions of the 
slippage zone L. Let us write X = (d - b)(d - a)-* and h, = (d, - b)(d, - a)-' for the relative 
length of the slippage and separation zones. Transforming (2.6) to the form & = t' In I(1 - 

J,'m(h)(l + 1'1 - h)-'1 and substituting it into (2.17), we obtain 

~~(e)~~~~*(8), k=O,C&... 

plr(e)=[ch W,(8)]-', ?, (0) = Pk @ - ‘hn) 

Wk(e)= max (0,'/,yw1[n(2k -+- I)--81) 

(2.18) 

Thus a solution containing one coupled segment and one slippage segment will be realized 
in any case, provided that d, = d (Fig.l(4)). Moreover, when the direction of the force is 
given, the relative length h of the slippage segment will be found in the denumerable set of 
segments (2.181, which become narrower as k increases. 

When mti(0)<A<p,(8), the condition d,= d is necessary since according to (2.15), 
(2.14) and (2.16) we find, that near the point I = d v'(x)>0 and at any d,> d, the free 
boundary of the half-plane would intersect the stamp. 

If-on the other hand 
h = Pk (0) (2.19) 

then the admissible length of the cut will always be greater than the length of the zone of 
contact (d, >d), and the intervals of existence of a mechanically realizable solution with 
a single slippage segment (2.18) can therefore be extended (Fig.l(3)). Indeed, in this case 
we have 

& = &.r (et, j&l (8) = 8 -Z (2k f i), c, = 0, 0% = 'i&'F 

and by virtue of (2.13), (2.14) 

t(2.20) 

Using (1.2), (1.241, (2.2)-(2.4), (2.12) and (2.20), we obtain 

2E” fx + I)’ v’ (5) = 
Fsin cp(r) 

ti(r--a)@---b) ’ z>d 

(r (x) = 2y In 
f/(d - b) (5 -a) 

r/(d - a) (5 - 6) f I/(6 - a) (5 - d) 

From this it follows that when r>d tp'(z)< 0, the function 
and 

(2.21) 

(2.22) 

cp(s)decreases monotonically 

(2.23) 

From (2.22), (2.23) we find v'(d + 0) = 0,which means that at the point x = d and under 
conditions (2.19), the surfaces of the stamp and the half-plane which are in contact with each 
other, adhere smoothly to one another and u(x)(v(d)inacertain neighbourhood of this Point. 
The free boundaries of the half-plane intersects an extension of the stamp surface at certain 
points 5 = ,r*, provided that v(z.)= u(d). By virtue of (2.22), the latter condition is equiv- 
alent to the foJ.lowing_equation in 5,: r, 

s 
sincp(r)dx 

d r/(2--a)@-- b) =O 
(2.24) 

in which the value of d is found from (2.191, depending on thevalueof k. 

This implies that d,f (d, d*) where d, = minz,. 
The relations (2.23) (2.201 when k =O 0,<6,<x, i.e. when -n<&(e),<O, show 

that Eq.(2.24) has no solutions. Thus, if the force pulls the stamp away from the half-plane 
(0,<0,<n), then d, = 00. 

The table below gives the values of the relative length of the slippage zone (2.19) when 
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Table 

When k>i, the quantity d, will always be finite. This follows fromthetheorem on the 
uniqueness of the solution of contact problems in the theory of elasticity containing a region 
of one-sided constraints, which can be proved by following /8/. Thus the possible length of 
the cut will satisfy, not (2.18) but the extended inequalities 

mr(0).<hO<51,, h,=(d* -b)(d, - a)-’ (2.25) 

In all the remaining cases h,<&<?1&~(8), contact between the separated part of the 
stamp and the half-plane occurs along two or more separate segments. 

In conclusion, we will trace the development of the separation crack. 
From (2.14) it follows that when conditions (2.16) hold, the stress intensity coefficient 

co at the point r = b is always non-positive. Therefore, the growth of the closed crack I; 
(separation) can be caused, from the point of view of the theory of the fracture of elastic 
materials /gl lo/, only by the tangential stresses whose singularcharacter nearthe point x = b 
has the form (2.131, (2.14). Since the function r%,(z) is continuous in &, and rzV (b)= 0 when 
BO = 8 -X (2k + 'i,), we can have as many segments of the stamp foundation as we like, determined 
by the number k on the left-hand side of inequality (2.18) which, when occupied by the 
separationcrack, leave the latter stable, according to the theory of cracks, for any material 
and any value of F. (We note that the stresses al,(b) are bounded, but very large; if CT* = 
$; ;o~)F1u, (b) and )c = 3, then when k = 0, 6 = ‘lsn CT* = 1.46.105, when k = 1, e = Vs~ a* = 
. * 

indicated 
when x = 1.8, k = 0, 6 = ‘igc CT.+= 3.25*100.) The growth of the crack on the segments 
can be caused only by the non-elastic factors such as plasticity, temperature or 

chemical reaction, and will, naturally, proceed slowly or will stop completely. 
However, if for any 0< 6( n the crack should shift, for whatever reason, or a notch 

is made extending to the point corresponding to Eq.(2.19) at k = 0, then the crack will 
become globally unstable, or in the course of its growth smooth contact will be maintained 
at the point x= b, with one segment of contact of L retained and the tangential stress 
intensity coefficient Km = -(x+ 1)F [2nx (b - a)]-‘/~ as a function of b--a, increasing 
monotonically. 

3. Let the zone of separation be situated in the middle part of the stamp (Fig.l(S)f. 
Then the boundary conditions of the problem will have the form (1.1) when M = [a, bl I_, [c, d, 

L = Ib, cl, r1 = r2. We must write 

z(s)= (2 - a)-%+iY(r -6))'A-1(z - c)-%+*Y(z _Q%-iv (3.1) 

2(2)=2-~+0(2-~), Z-+03 

in the canonical solution (1.8). 
Repeating the arguments of Sect-l, we obtain 

9(z)=~(n++n-+4)+na4Y(z)+ n+-yLl~ 

Y (2) = y In I: 1:; 1: 1;) + cp (2) 

where m(z) from (1.17) is given in terms of elementary functions 

in 

(d - b) (I-C) + V(d - c) (i -- b) ~(z)=2yqvzi :(b__u)(L_f)+~(C_.)(I-~) I 
the expansion at infinity (1.20) 

Bo,_2y,ntid-+S‘l/= 
G+G 

Bt=r[t'(ca-b)(d--c)+t/(c--a)(b-a)] 

Two linearly independent canonical solutions of the homogeneous problem (1.6), (1. 

Xl (2) = - 
@0) i,iW 

(2 - a) (z - b) (t-c) (z - d) 
, x3 (4 == 1/ (3 - a) (I - d) 

13.2) 

(3.3) 

(3.4) 

7) 

(3.5) 
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are obtained from (1.8), (3.2) respectively when n+ z 0, n- zz -2, a = 0 and n+= o,n- = __1 

a = -1. Near the points z = a, z = CE the solutions oscillate and increase without limit. 
At the points z = b, z = c the function X,(z) has a root-type singularity and the function 

x, (z) is bounded and non-zero. 

The general solution of the problem is given by the formulas (1.24), (1.25), in which 

the constants Cr, C,, D,, D, satisfy, according to the condition at infinity (1.3), the 

equations 
- CI + iDI= [l/ruxw + 2ip (x + 1)-l em] e+ (3.6) 
--Ca+iDa--lliSl+‘la(a+b+c+d)]+ 

iD1 [ipI + ‘ia (a + d)] = - l/,n-lFei(W) 

The constant Ca is found from the given difference 6 in tangential displacements between 

the edge points of the coupled 

Using the formulas (1.3), 

segments x=b and x=c, by the condition 

Sd(z)dz=u(c)-u(b)=6 (3.7) 
L 

(1.24), (3.5), (3.6), (3.3) we obtain, when ZEL, 

24 (5) = 2I/xP(z)chp(z) 

1/(+-Q)(Z--_)(C-z)(d-z) - 

2l/xQ(z)shP(z) 
1/(=_ a)(d_ *) + x@o-W + @o+(z) 

P(")=nY-VOW (3.9) 

(3.8) 

where p(x)>O, ‘p,,(z)>0 on L. 

The contact stresses on the 

by the formulas 

slippage segment L are given 

Fig.2 or(z)=- 
='(z)shcpo(r) 

I/@-a)@--)(c-z)(d-z) - 
(3.10) 

As an example we shall consider in more detail the homogeneous problem in the case when 

the cut is symmetrical about the stamp edges, there is no preloading b between the segments 

la, bl and (c, dj, and the stress and rotation at infinity are both zero. 

Putting (3.3)-(3.5), (3.9)a=--a,, b=-b,.c=b,,d=n,we obtain 

cp (P) = Zylo 
Gz I/@,+ W (2 - 61) + r/c@- 61) (2 + bl) 
- 
' - " I/(~I - bl) (2 - W + fl(a~+ bl) (2 - 61) 1 

fro =O, PI = 2yf/a+ b,Z, p(z)= 2y arc& I/&a - sa) (a,1 - bra)-' 

a0 (2) E 0, C, = D, = 0, C, = V,lc-'Fcos 8, D, = V,n-'F sin 0 

(3.11) 

(3.12) 

Substituting (3.12) into (3.7), (3.8) and taking into account the parity of the function 

P (XL we obtain 

i 
b, b, 

CJ=-gFb,usinO, o= 
s 

shP(r) dz 

[ s 

ch p (z) ds 
-1 

s VW blo I/(q’-zy(b,‘-zI’) I 
43.13) 

Here o~(O,l),since both integrands are continuous, positive and the second function 
majorizes the first in (O,b,). 

Figure 2 shows a graph of o as a function of relative length of the slippage segment 

b,la, for x=1 and x= 3 (the solid lines 1 and 2). 
Using (3.10), (3.12), (3.13) we obtain, on L, 

F 

[ 

(blo Sin 8 - z ~0s 8) Sh qh (5) Sine chcp,(z) 
%(Z) = n I/@,* - x*) (b,*- 9) + ffTl0 1 (3.14) 

'Pa (z) = V - P (2) 

Analysing the above formula we see that the contact stresses will be compressive over 

the whole slippage segment, provided that the following three conditions hold: sinO<O. osinO* 
cPse<O. This yields the following restriction on the direction of the force: 

1 8 - “/,n 1 < IFlo, 0 Q cl0 = arctg 0 < ‘i, n 
According to (1.2), (1.24), (3.5), (3.12)-(3.14), the asymptotic expansions for the 

stresses have the following form near the point Z= 0,: 
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by (2) = 50 + 0 (I/b1 - +), 2 _ b, - 0 

TxN (J) = Ktf [2x (b, - z)]-’ ? f O(#-b,), Z-obl”-O 

R,~_.2sK fx f 1) Fb, (cos fJ - o sin 0) 
x+i 11’ &I = 2 flnxbl (al’ - bl*) 

(x+l)Psine 
so= ?&)I,,*- bxs 

(3.16) 

Figure 2 shows how the dimensionless quantity K, = K,, F-‘fBna, varies as a function of 

bh in the case of a normal load (B=J/,n) for x= i,8 and x= 3 (the dashed lines 1 and 2). 
As expected, the tangential stress intensity coefficient K, increases monotonically and 
without limit as the length of the separation segment increases. Thus, if the length of a 
closed crack reaches its critical value, it becomes globally unstable under a constant load 
and spreads over the whole segment [-nl,n,]. 
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LYAPUNOV STABILITY AND SIGN DEFINITENESS OF A QUADRATIC FORM IN A CONE* 

L.B. RAPOPORT 

The use of the second Lyapunov method in many problems in the theory of 
stability of motion leads to the problem of sign definiteness of a 
quadratic form whose variables are defined in a convex polyhedral cone 
CC R”. A method of obtaining the necessary and sufficient conditions is 
given for this problem. The conditions imposed on the elements of the 
third- and fourth-order matrices are given. The problem of as_ymptotic 
stability of a system with resonance fl/ is solved as an example. 

A number of problems of the theory of the stability of motion require 
that the sign definiteness of the quadratic form be established, with 
conditions written in the form of linear inequalities. Usually, the 
conditions are thoseof non-negativity /l-3/, and the more general conditions 
can be reduced to them. The problem of sign definiteness of a quadratic 
form under the conditions of non-negativeness was considered for an 
arbitrary number of variables in /4/. However, the results obtained there 
can be reduced to the problem of the compatibility of systems of inequalities 
and pose well-known difficulties when used to solve specific problems. 
The problemofthe sign definiteness of a quadratic form in a convex cone 
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